121 research outputs found

    Quantum Field Theory on Spacetimes with a Compactly Generated Cauchy Horizon

    Get PDF
    We prove two theorems which concern difficulties in the formulation of the quantum theory of a linear scalar field on a spacetime, (M,g_{ab}), with a compactly generated Cauchy horizon. These theorems demonstrate the breakdown of the theory at certain `base points' of the Cauchy horizon, which are defined as `past terminal accumulation points' of the horizon generators. Thus, the theorems may be interpreted as giving support to Hawking's `Chronology Protection Conjecture', according to which the laws of physics prevent one from manufacturing a `time machine'. Specifically, we prove: Theorem 1: There is no extension to (M,g_{ab}) of the usual field algebra on the initial globally hyperbolic region which satisfies the condition of F-locality at any base point. In other words, any extension of the field algebra must, in any globally hyperbolic neighbourhood of any base point, differ from the algebra one would define on that neighbourhood according to the rules for globally hyperbolic spacetimes. Theorem 2: The two-point distribution for any Hadamard state defined on the initial globally hyperbolic region must (when extended to a distributional bisolution of the covariant Klein-Gordon equation on the full spacetime) be singular at every base point x in the sense that the difference between this two point distribution and a local Hadamard distribution cannot be given by a bounded function in any neighbourhood (in MXM) of (x,x). Theorem 2 implies quantities such as the renormalized expectation value of \phi^2 or of the stress-energy tensor are necessarily ill-defined or singular at any base point. The proofs rely on the `Propagation of Singularities' theorems of Duistermaat and H\"ormander.Comment: 37 pages, LaTeX, uses latexsym and amsbsy, no figures; updated version now published in Commun. Math. Phys.; no major revisions from original versio

    Reissner Nordstr\"{o}m Background Metric in Dynamical Co-ordinates: Exceptional Behaviour of Hadamard States

    Full text link
    We cast the Reissner Nordstrom solution in a particular co-ordinate system which shows dynamical evolution from initial data. The initial data for the E<ME<M case is regular. This procedure enables us to treat the metric as a collapse to a singularity. It also implies that one may assume Wald axioms to be valid globally in the Cauchy development, especially when Hadamard states are chosen. We can thus compare the semiclassical behaviour with spherical dust case, looking upon the metric as well as state specific information as evolution from initial data. We first recover the divergence on the Cauchy horizon obtained earlier. We point out that the semiclassical domain extends right upto the Cauchy horizon. This is different from the spherical dust case where the quantum gravity domain sets in before. We also find that the backreaction is not negligible near the central singularity, unlike the dust case. Apart from these differences, the Reissner Nordstrom solution has a similarity with dust in that it is stable over a considerable period of time. The features appearing dust collapse mentioned above were suggested to be generally applicable within spherical symmetry. Reissner Nordstrom background (along with the quantum state) generated from initial data, is shown not to reproduce them

    Infrared problem for the Nelson model on static space-times

    Full text link
    We consider the Nelson model with variable coefficients and investigate the problem of existence of a ground state and the removal of the ultraviolet cutoff. Nelson models with variable coefficients arise when one replaces in the usual Nelson model the flat Minkowski metric by a static metric, allowing also the boson mass to depend on position. A physical example is obtained by quantizing the Klein-Gordon equation on a static space-time coupled with a non-relativistic particle. We investigate the existence of a ground state of the Hamiltonian in the presence of the infrared problem, i.e. assuming that the boson mass tends to 0 at infinity

    Bounds on negative energy densities in flat spacetime

    Get PDF
    We generalise results of Ford and Roman which place lower bounds -- known as quantum inequalities -- on the renormalised energy density of a quantum field averaged against a choice of sampling function. Ford and Roman derived their results for a specific non-compactly supported sampling function; here we use a different argument to obtain quantum inequalities for a class of smooth, even and non-negative sampling functions which are either compactly supported or decay rapidly at infinity. Our results hold in dd-dimensional Minkowski space (d≥2d\ge 2) for the free real scalar field of mass m≥0m\ge 0. We discuss various features of our bounds in 2 and 4 dimensions. In particular, for massless field theory in 2-dimensional Minkowski space, we show that our quantum inequality is weaker than Flanagan's optimal bound by a factor of 3/2.Comment: REVTeX, 13 pages and 2 figures. Minor typos corrected, one reference adde

    A general worldline quantum inequality

    Get PDF
    Worldline quantum inequalities provide lower bounds on weighted averages of the renormalised energy density of a quantum field along the worldline of an observer. In the context of real, linear scalar field theory on an arbitrary globally hyperbolic spacetime, we establish a worldline quantum inequality on the normal ordered energy density, valid for arbitrary smooth timelike trajectories of the observer, arbitrary smooth compactly supported weight functions and arbitrary Hadamard quantum states. Normal ordering is performed relative to an arbitrary choice of Hadamard reference state. The inequality obtained generalises a previous result derived for static trajectories in a static spacetime. The underlying argument is straightforward and is made rigorous using the techniques of microlocal analysis. In particular, an important role is played by the characterisation of Hadamard states in terms of the microlocal spectral condition. We also give a compact form of our result for stationary trajectories in a stationary spacetime.Comment: 19pp, LaTeX2e. The statement of the main result is changed slightly. Several typos fixed, references added. To appear in Class Quantum Gra

    Equivalence of the (generalised) Hadamard and microlocal spectrum condition for (generalised) free fields in curved spacetime

    Full text link
    We prove that the singularity structure of all n-point distributions of a state of a generalised real free scalar field in curved spacetime can be estimated if the two-point distribution is of Hadamard form. In particular this applies to the real free scalar field and the result has applications in perturbative quantum field theory, showing that the class of all Hadamard states is the state space of interest. In our proof we assume that the field is a generalised free field, i.e. that it satisies scalar (c-number) commutation relations, but it need not satisfy an equation of motion. The same argument also works for anti-commutation relations and it can be generalised to vector-valued fields. To indicate the strengths and limitations of our assumption we also prove the analogues of a theorem by Borchers and Zimmermann on the self-adjointness of field operators and of a very weak form of the Jost-Schroer theorem. The original proofs of these results in the Wightman framework make use of analytic continuation arguments. In our case no analyticity is assumed, but to some extent the scalar commutation relations can take its place.Comment: 18 page

    Microlocal analysis of quantum fields on curved spacetimes: Analytic wavefront sets and Reeh-Schlieder theorems

    Full text link
    We show in this article that the Reeh-Schlieder property holds for states of quantum fields on real analytic spacetimes if they satisfy an analytic microlocal spectrum condition. This result holds in the setting of general quantum field theory, i.e. without assuming the quantum field to obey a specific equation of motion. Moreover, quasifree states of the Klein-Gordon field are further investigated in this work and the (analytic) microlocal spectrum condition is shown to be equivalent to simpler conditions. We also prove that any quasifree ground- or KMS-state of the Klein-Gordon field on a stationary real analytic spacetime fulfills the analytic microlocal spectrum condition.Comment: 31 pages, latex2
    • …
    corecore